Semantische Paradoxien

 Schon einige Jahre vor dem Russell-Zermeloschen Paradoxon hatten Cantor und Burali-Forti mengentheoretische Paradoxien entdeckt, die mit den Ordinal-und Kardinalzahlen zusammenhängen; wir besprechen diese Paradoxien im zweiten Abschnitt. Durch die Veröffentlichung der Russell-Zermelo-Paradoxie durch Bertrand Russell 1903 wurden Paradoxien dann zum heißen Eisen der Logik. Selbstbezüglichkeit und Diagonalisierung hießen die Werkzeuge der paradoxen Ingenieurskunst, und ab 1905 wurde eine Reihe vorwiegend semantischer Paradoxien produziert. Die bekanntesten unter ihnen sind die Paradoxie von Jules Richard (1862 − 1956) aus dem Jahre 1905 [vgl. auch König 1905b], die Paradoxie von „Mr. G. G. Berry of the Bodleian Library“, veröffentlicht mit dieser Fußnote von Russell 1908, sowie die Paradoxie von Kurt Grelling (1886 − 1942) in [Grelling / Nelson 1908]. Weit vor ihnen liegt die Paradoxie des Epimenides aus der Antike. Wir wollen diese Paradoxien kurz besprechen.

Paradoxie des Epimenides

Wir betrachten den Satz „Ich lüge jetzt.“ (oder „Diese Aussage ist falsch.“) Ist dieser Satz wahr oder falsch? Ist er wahr, so ist er falsch, und ist er falsch, so ist er wahr. (Die Aussage eines Kreters, der sagt „Alle Kreter lügen immer“ ist dagegen nicht paradox, sondern einfach eine Lüge.)

Oder: Sprechen Sie auf ein leeres Tonband mit zwei Stunden Laufzeit genau einen Satz bei Minute 60, und zwar diesen: „Alle Sätze auf diesem Tonband sind falsch.“ Spulen Sie das Band zurück, und hören Sie es sich ganz an. Haben Sie einen wahren Satz auf dem Tonband gehört oder nicht? (Das Band heißt „paradoxical meditation 120“.) Sprechen Sie den Satz nun 120 Mal in 120 Sprachen an verschiedenen Stellen auf ein anderes Band, und hören Sie sich das Band an. Haben Sie einen wahren Satz auf dem Tonband gehört? (Das Band heißt „mankind searching for truth“.) Der Leser kann diese Gedankenexperimente weiter ausbauen, etwa mit vor- und zurückverweisenden Sätzen, wie zum Beispiel: „Der folgende Satz ist falsch.“ gefolgt von „Der vorhergehende Satz ist wahr.“ Daneben bilden Endlostonbänder eine gute Grundlage für logische Verwicklungen.

Die Paradoxie von Richard

Wir betrachten irgendeine (abzählbar unendliche) Liste 𝔖 = S0, S1, S2, S3, …, Sn, …, n  ∈  , aller Sätze der deutschen Sprache, die eine reelle Zahl definieren. Für n  ∈   sei f (n) die reelle Zahl, die durch Sn definiert wird. Es sei dann x = 0, b0 b1 b2 …, bn  ∈  { 1, 2 } für n  ∈  , die Cantorsche Diagonalisierung von f (0), f (1), f (2), …, (vgl. Kapitel 8). Dann gilt x ≠ f (n) für alle n  ∈  . Aber es gilt, dass x definiert wird durch den Satz S = „die Cantorsche Diagonalisierung der durch die Liste 𝔖 gegebenen reellen Zahlen f (n), n  ∈  .“ Also ist S = Sn für ein n, und dann ist x = f (n), Widerspruch!

Die Paradoxie von Berry

Sei A ⊆  die Menge der natürlichen Zahlen, die durch einen Satz der deutschen Sprache definiert werden können, der höchstens 19 Wörter lang ist. Dann ist A endlich, da es nur endlich viele derartige Sätze gibt. Sei also n = min( − A). Dann gilt n = „die kleinste natürliche Zahl, die nicht durch einen Satz der deutschen Sprache mit höchstens neunzehn Wörtern definiert werden kann“. Dann ist n aber durch einen Satz mit 19 Wörtern definierbar, also gilt n  ∈  A, Widerspruch!

Die Paradoxie von Grelling

Das Wort „blau“ ist nicht blau, aber das Wort „mehrsilbig“ ist mehrsilbig, „deutsch“ ist deutsch, „kalt“ ist nicht kalt, aber „abstrakt“ ist abstrakt. Wir nennen ein Wort selbsteinschließend (oder prädikabel), falls das Wort unter den durch das Wort bezeichneten Begriff fällt, und selbstausschließend sonst. Die Frage ist nun: Ist „selbstausschließend“ selbsteinschließend oder selbstausschließend? Ist „selbstausschließend“ selbsteinschließend, so trifft es auf sich selbst zu und ist also selbstausschließend. Ist aber „selbstausschließend“ selbstausschließend, so trifft es auf sich zu, also ist es selbsteinschließend, Widerspruch!

 Die Paradoxien sind in dieser Form zwar unterhaltsam, aber nicht wirklich bedrohlich oder mathematisch ernst zu nehmen, denn sie reden nicht über klar definierte mathematische Objekte. Und wenn man die Paradoxien außermathematisch betrachtet, gewinnt man den Eindruck, dass sie verschiedene Sprachebenen vermischen, oder Sprache und Definierbarkeit als etwas Absolutes betrachten. Dem Auge des Lesers wird geraten, nicht zu lange dem unaufhörlichen „wahr-falsch“-Pendel der Paradoxien zu folgen. Logische Spitzfindigkeiten zehren, wie bei Ovid die durchwachten Nächte, an den Kräften junger Männer (und Frauen).

 Interessanterweise lassen sich aber die Ideen hinter diesen Paradoxien durch Formalisierung mathematisch umsetzen, und sie führen dann nicht zu Widersprüchen, sondern zu fundamentalen Ergebnissen: Der erste Gödelsche Unvollständigkeitssatz gipfelt in der Konstruktion einer formalen Aussage, die inhaltlich besagt: „ich bin nicht beweisbar“ oder „diese Aussage ist nicht beweisbar“. Ein Satz von Tarski lautet: Es gibt keine arithmetische Definition der Wahrheit von arithmetischen Sätzen (und das Gleiche gilt innerhalb der Mengenlehre für die Wahrheit von Sätzen der Mengenlehre; dagegen gibt es in der Mengenlehre eine mengentheoretische Definition der arithmetischen Wahrheit). In der Berechenbarkeitstheorie zeigt man: Es gibt keine effektive Aufzählung aller berechenbaren Funktionen f :   . Die Unentscheidbarkeit des Halteproblems gehört auch hierher: Es gibt kein Programm, das andere Programme einliest, und dann entscheidet, ob das eingelesene Programm, wenn man es anwirft, terminiert oder nicht. Weiter kann man beweisen: Es gibt eine effektiv auflistbare Menge A ⊆ , für welche die Frage „ist n  ∈  A?“ nicht algorithmisch beantwortbar ist. Die Menge aller (Kodes von) beweisbaren Sätzen der axiomatischen Zahlentheorie − oder einer axiomatischen Mengenlehre − ist ein Beispiel für eine solche listbare, aber nicht entscheidbare Menge. Hinter all diesen mathematischen Sätzen steht ein Diagonalargument. Es ist klar, dass man schon für die bloße mathematische Formulierung solcher Resultate sehr sorgfältig vorgehen muss, und wir müssen den Leser hier auf die Lehrbücher zur mathematischen Logik verweisen.

Abraham Fraenkel über Georg Cantor

 „Was die Persönlichkeit C.s im allgemeinen betrifft, so berichten alle, die ihn kannten, von seinem sprühenden, witzigen, originellen Naturell, das leicht zur Explosion neigte und stets voll heller Freude über die eigenen Einfälle war; von dem niemals ermüdenden Temperament, das die Teilnahme seiner auch äußerlich imponierenden, großen Gestalt an einer Mathematikerversammlung zu einem ihrer lockendsten Reize machte, das bis in die späte Nacht wie auch in früher Morgenstunde seine Gedanken (zu seinen mathematischen und den vielseitigen außermathematischen Interessengebieten) förmlich überquellen ließ; von seinem lauteren Charakter, treu seinen Freunden, hilfreich, wo es nötig war, liebenswürdig im Verkehr; nebenbei auch von einer typischen Gelehrtenzerstreutheit. Im mündlichen wissenschaftlichen Gedankenaustausch war er mehr der Gebende; es lag ihm nicht, unmittelbar vorgetragene fremde Ideen sogleich aufzufassen. All seinen Gedanken war er mit der gleichen Liebe und Intensität hingegeben; in stärkerem Maße vielleicht noch als der aufgewandte Scharfsinn und selbst als die mit begrifflicher Gestaltungskraft gepaarte geniale Intuition ist die ungeheuere Energie, mit der er seine Gedanken über alle Hindernisse und Hemmungen hinweg verfolgte und an ihnen festhielt, das Instrument gewesen, dem wir die Entstehung der Mengenlehre zu danken haben. Solch unerschütterliche Zähigkeit entsprang seiner tiefen Überzeugung von der Wahrheit, ja Wirklichkeit seiner Ideen…

 Einen der großen Bahnbrecher der Wissenschaft hat die mathematische Welt, und zu unserem Stolz speziell auch unsere Deutsche Mathematikervereinigung, in Georg Cantor besessen. Die allgemeine Verbreitung der Erkenntnis, dass sein Werk der Analysis neue Bahnen gewiesen und ganz neuartige Problemstellungen eröffnet hat, hat er noch selbst zum großen Teile erlebt. Dass seine Ideen aber auch der Geometrie einen geradezu revolutionären Fortschritt auf Bahnen von unantastbarer Strenge ermöglicht haben, wird … mehr und mehr deutlich und anerkannt. Ja selbst für physikalische Anwendungen haben sich die feinsten Ideen der Punktmengenlehre als höchst nützlich erwiesen. Hinsichtlich des − jene Theorien in gewissem Sinne überspannenden − Gebäudes der abstrakten Mengenlehre, wozu neben den allgemeinen Theorien der Äquivalenz und der Ähnlichkeit namentlich auch das Reich der transfiniten Ordnungszahlen sowie der philosophische Aspekt der Mengenlehre zu rechnen ist, sind freilich die Geister heute erneut in Unruhe und teilweise in Unsicherheit verstrickt. Doch auch hier wird sich im Laufe der Entwicklung früher oder später Hilberts Wort erfüllen von dem Paradiese, das Cantor uns geschaffen habe und aus dem uns niemand solle vertreiben können. Mögen da auch manche grundsätzlich neue Gedanken erforderlich sein und in Richtungen weisen, die uns heute noch fremd sind: die Eroberung des Aktual-Unendlichen für die Wissenschaft überhaupt ist eine historische Tatsache, und auf ihrem Boden, auf Cantors Ideen aufbauend, wird sich die Weiterentwicklung vollziehen im Sinne der Zuversicht, die Cantor seiner abschließenden Darstellung als letztes Motto vorangestellt hat: ‚Veniet tempus, quo ista, quae nunc latent, in lucem dies extrahat et longioris aevi diligentia.‘ “

(Abraham Fraenkel 1930, „Georg Cantor“. In: Jahresbericht der DMV 39)