Menge und Element
Wir besitzen ein intuitives Verständnis des Begriffs „Menge“ und der Beziehung „a ist ein Element der Menge b“. Für „a ist ein Element der Menge b“ schreiben wir kurz „a ∈ b“.
Besonders in dieser Einführung stützen wir uns auf dieses naive Verständnis des Mengenbegriffs. Georg Cantor (1845 − 1918) hat in seiner letzten mengentheoretischen Arbeit die folgende Zusammenfassung oder Beschreibung unserer Intuition formuliert:
„Unter einer ‚Menge‘ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‚Elemente‘ von M genannt werden) zu einem Ganzen.“
(Georg Cantor, 1895a)
Dies ist keine mathematische Definition im heute üblichen Sinne − was genau ist eine „Zusammenfassung“ oder ein „Ganzes“ ? −, und dennoch beschreibt sie recht genau unsere Vorstellung von einer Menge. Und sie enthält eine bemerkenswerte Feinheit: Cantor betont den Akt der Zusammenfassung zu einem Ganzen, zu einem Objekt. Die Mengenbildung verläuft hiernach zweistufig: Zuerst wird eine Vielheit, eine Ansammlung, ein Bereich betrachtet, und in einem zweiten Schritt wird diese Vielheit zu einer Einheit zusammengefasst. Cantor war lange vor seiner Definition völlig klar, dass man nicht alle Vielheiten zu einer Menge zusammenfassen kann, dass also der zweite objektbildende Schritt nicht in jedem Falle legitim ist. Wir kommen erst später auf diesen wichtigen Punkt zurück, denn der durch die Intuition gewiesene Weg lässt sich soweit verfolgen, bis die Grenzen des Mengenbegriffs sichtbar und erfahrbar werden.
Extensionalität und Iteration
Der Cantorschen Definition fügen wir noch ein Gleichheitskriterium hinzu. Man kann argumentieren, dass sich dieses Kriterium für die Gleichheit zweier Mengen aus Cantors Definition ableiten lässt.
Zwei Mengen sind genau dann gleich, wenn sie dieselben Elemente haben. (Extensionalitätsprinzip)
Richard Dedekind (1831 − 1916), der einen Aufbau der Arithmetik mit Hilfe des Mengenbegriffs entwickelte, hat in seinem Buch „Was sind und was sollen die Zahlen?“ − ein Klassiker der mathematischen Abteilung der Weltliteratur − eine sehr ähnliche intuitive Beschreibung von „Menge“ gegeben und dabei das Extensionalitätsprinzip explizit notiert. Mengen heißen bei ihm Systeme.
Dedekind (1888):
„Im Folgenden verstehe ich unter einem Ding jeden Gegenstand unseres Denkens… Es kommt sehr häufig vor, dass verschiedene Dinge a, b, c, … aus irgend einer Veranlassung unter einem gemeinsamen Gesichtspunkte aufgefasst, im Geiste zusammengestellt werden, und man sagt dann, dass sie ein System S bilden. Man nennt die Dinge a, b, c, … die Elemente des Systems S, sie sind enthalten in S; umgekehrt besteht S aus diesen Elementen. Ein solches System S (oder ein Inbegriff, eine Mannigfaltigkeit, eine Gesamtheit) ist als Gegenstand unseres Denkens selbst ein Ding; es ist vollständig bestimmt, wenn von jedem Ding bestimmt ist, ob es Element von S ist oder nicht *). Das System S ist daher dasselbe wie das System T, in Zeichen S = T, wenn jedes Element von S auch Element von T ist, und jedes Element von T auch Element von S ist…“
Die Fußnote *) bei Dedekind holen wir gleich nach!
Neben der Extensionalität hebt Dedekind hier einen weiteren fundamentalen Gesichtspunkt hervor: Die Mengenbildung liefert ein Ding, und damit können Mengen als Dinge die Elemente von anderen Mengen sein, und diese wiederum Elemente von wieder anderen Mengen, usw. Das Mengenkonzept ist seiner Natur nach iterativ, und die Mengenlehre erhält durch das sich aufschaukelnde Wechselspiel, dass jede Menge b, die rechts in „a ∈ b“ auftaucht, auch links in „b ∈ c“ auftauchen kann, sowohl Struktur als auch Flexibilität.
Der Dritte im Bunde sei Felix Hausdorff (1868 − 1942), für dessen Ausdrucksstärke und Gedankenklarheit dieser Text häufig als Zeittunnel dienen wird. Er formuliert die Grundgedanken mehrere Jahrzehnte später so:
Hausdorff (1927):
„Eine Menge entsteht durch Zusammenfassung von Einzeldingen zu einem Ganzen. Eine Menge ist eine Vielheit, als Einheit gedacht. Wenn diese oder ähnliche Sätze Definitionen sein wollten, so würde man mit Recht einwenden, dass sie idem per idem oder gar obscurum per obscurius definieren. Wir können sie aber als Demonstrationen gelten lassen, als Verweisungen auf einen primitiven, allen Menschen vertrauten Denkakt, der einer Auflösung in noch ursprünglichere Akte vielleicht weder fähig noch bedürftig ist. Wir wollen uns mit dieser Auffassung begnügen und es als Grundtatsache hinnehmen, dass ein Ding M in eigentümlicher, nicht definierbarer Weise gewisse andere Dinge a, b, c … und diese wiederum jenes bestimmen; eine Beziehung, die wir mit den Worten ausdrücken: die Menge M besteht aus den Dingen a, b, c, …“
Der kompakte Slogan „Vielheit, als Einheit gedacht“ verweist wieder auf die Möglichkeit der Iteration, und zudem auf die Zweistufigkeit des Vorgangs: Betrachtung einer Vielheit und Objektbildung.
Hausdorff betont wieder die Extensionalität des Begriffs: Zu einer Menge gehören Elemente, und die Elemente bestimmen „wiederum“ die Menge selbst. Es gibt keine „roten“ oder „grünen“ Mengen, die genau die Zahlen 1, 2 und 3 als Elemente enthalten. Es gibt nur ein Ding, das aus 1, 2, 3 besteht.
Keine gute Vorstellung wäre es dagegen, eine Menge als „Summe ihrer Elemente“ zu betrachten. Die Menge b etwa, die nur die Menge a als Element hat, ist nach dem Extensionalitätsprinzip sicher nicht mit a identisch, wenn a selbst mehr als ein Element besitzt. Die „Summe der Elemente“ von b wäre aber a.
Auch heute gilt „Menge“ als ein nicht weiter definierter Grundbegriff − irgendwo muss man anfangen. An einer intuitiven Erläuterung kommt aber kein einführender Text vorbei, und zumeist ist es die Cantorsche Definition von 1895, die hierfür als Ausgangspunkt gewählt wird. Dies ist kein Zufall, und von Vorteil auch nicht nur aus rein historischen Gründen: In seiner Gesamtschau der Mengenlehre hatte Cantor neben einer herausragenden Intuition eine Unbefangenheit, die wir heute, formalistisch und axiomatisch geschult, kaum mehr erreichen können.
Selbstbestimmtheit und freie Begriffsbildung
Es gibt neben der Extensionalität des Mengenbegriffs und der Iterierbarkeit der Mengenbildung noch einen dritten ganz wesentlichen Aspekt, den man die Selbstbestimmtheit der Mengen nennen könnte. Hierzu liefern wir zuerst die den Satz „[Ein System] ist vollständig bestimmt, wenn von jedem Ding bestimmt ist, ob es Element von S ist oder nicht *)“ zierende Fußnote nach. Sie lautet:
Dedekind (1888):
„*) Auf welche Weise diese Bestimmtheit zu Stande kommt, und ob wir einen Weg kennen, um hierüber zu entscheiden, ist für alles Folgende gänzlich gleichgültig; die zu entwickelnden allgemeinen Gesetze hängen davon gar nicht ab, sie gelten unter allen Umständen. Ich erwähne dies ausdrücklich, weil Herr Kronecker vor Kurzem (im Band 99 des Journals für Mathematik, S. 334 − 336) der freien Begriffsbildung in der Mathematik gewisse Beschränkungen hat auferlegen wollen, die ich nicht als berechtigt anerkenne; näher hierauf einzugehen erscheint aber erst dann geboten, wenn der ausgezeichnete Mathematiker seine Gründe für die Notwendigkeit oder auch nur die Zweckmäßigkeit dieser Beschränkungen veröffentlicht haben wird.“
Das ist nun inhaltlich wie historisch von großer Bedeutung. Leopold Kronecker (1823 − 1891) gehörte als angesehener Mathematiker zu den aktiven Gegnern der Cantorschen Mengenlehre und des Cantor-Dedekindschen Mengenbegriffs. Er war Mitbegründer des konstruktivistischen und intuitionistischen Zweiges der Mathematik, der sich von der klassischen, mengentheoretisch fundierten Mathematik dadurch unterscheidet, dass viele Dinge nicht erlaubt sind, etwa Existenzbeweise, die keine konkreten Beispiele oder Algorithmen mitliefern, oder der logische Schluss von nicht nicht A auf A für Aussagen A. Den Nachweis der allgemeinen „Notwendigkeit oder auch nur der Zweckmäßigkeit“ der Freiheitsberaubung ist dieser Zweig bis heute schuldig geblieben, und die klassische Mathematik kann mit ihrer scharfen Trennung der Begriffe Existenz und Algorithmus konstruktive Fragen innerhalb ihrer zollfreien Landschaften sehr gut behandeln, ohne ständig auf ein „Rasen betreten verboten“ zu stoßen.
Rückblickend erscheint heute die von konstruktiver Seite geförderte Feinanalyse des formalen mathematischen Beweisbegriffs am interessantesten zu sein, die zu charakterstarken, wenn auch etwas kauzigen Subsystemen der klassischen Logik geführt hat (intuitionistische Logik und Minimallogik, vgl. auch 3. 2.). Vorausblickend findet das nicht gerade ideologiefreie konstruktive Erbe seine Katharsis vielleicht einmal in Anwendungen in der Informatik. Die Ergebnisse müssen letztendlich immer zeigen, was für bestimmte Dinge „zweckmäßig“ ist und was nicht. Unwahrscheinlich erscheint es heute, dass der konstruktive Rahmen den weitergefassten klassischen Rahmen einmal ersetzen wird, wie es von vielen Apologeten des Nichtdürfens einmal vorgesehen war.
Inhaltlich besagt die Selbstbestimmtheit des Mengenbegriffs, dass wir eine Menge A bilden und mit ihr operieren können, ohne in allen konkreten Fällen Fragen der Form „Ist a ∈ A ?“ oder „Hat A die und die Eigenschaft?“ beantworten zu können. Es zeigt sich, dass in der allgemeinen mathematischen Praxis Bestimmtheitssorgen nicht auftauchen. Die Menge aller Primzahlen wird man als bestimmt ansehen, sobald man weiß, was eine Primzahl ist, die endlos strittige Menge aller sinnvollen Steuergesetze kommt dagegen in der Mathematik erst gar nicht vor. Innerhalb der formalen axiomatischen Mengenlehre werden dann letzte Zweifel an der Bestimmtheit von Mengenbildungen ausgeräumt, da diese kunstsprachlich genau geregelt werden. Man hätte in den sonnigen Breiten der üblichen Mathematik ein Streusalz gegen Glatteisbildung nicht nötig, aber für viele gewagtere Expeditionen der mathematischen Logik ist eine technische Zusatzausrüstung unerlässlich. Erst die Selbsterkenntnis führt zum Sündenfall und zum Verlust eines gleichförmigen Klimas.
Cantor schrieb bereits 1882 zu Fragen der Bestimmtheit und Wohldefiniertheit von Mengenbildungen:
Cantor (1882b):
„Eine Mannigfaltigkeit (ein Inbegriff, eine Menge) von Elementen, die irgend welcher Begriffssphäre angehören, nenne ich wohldefiniert, wenn auf Grund ihrer Definition und in Folge des logischen Prinzips vom ausgeschlossenen Dritten [d. h. es gilt ‚entweder A oder nicht A‘ für alle Aussagen A, scholastisch tertium non datur, ein Drittes gibt es nicht] es als intern bestimmt angesehen werden muss, sowohl ob irgend ein derselben Begriffssphäre angehöriges Objekt zu der gedachten Mannigfaltigkeit als Element gehört oder nicht, wie auch ob zwei zur Menge gehörige Objekte, trotz formaler Unterschiede in der Art des Gegebenseins einander gleich sind oder nicht.
Im Allgemeinen werden die betreffenden Entscheidungen nicht mit den zu Gebote stehenden Methoden oder Fähigkeiten in Wirklichkeit sicher und genau ausführbar sein; darauf kommt es aber hier durchaus nicht an, sondern allein auf die interne Determination, welche in konkreten Fällen, wo es die Zwecke fordern, durch Vervollkommnung der Hilfsmittel zu einer aktuellen (externen) Determination auszubilden ist.“
Wir haben also alle Freiheiten in der Mengenbildung, sofern nicht die Mengenbildungen selber widersprüchlich sind. Das ist zugegebenermaßen ein fast schon häretischer Gedanke − nur Gott kann alles, was sich nicht selbst widerspricht. (Den Zusatz der Widerspruchsfreiheit machte bereits die Scholastik, weshalb die bekannte Frage, ob der allmächtige G. auch einen Stein zu machen in der Lage ist, den er selber nicht aufheben kann, dort unproblematisch ist: Er kann es nicht, was seiner Allmacht keinen Abbruch tut.) Mephisto wird uns nachrufen, ob uns bei unserer Gottähnlichkeit der freien Mengenbildung und der Erkenntnis dessen, was Menge ist und was nicht, nicht bange wird. Wir kümmern uns aber nicht um den Teufel.
Man kann die Selbstbestimmtheit der Mengen auch so beschreiben: Wir können die weite Welt erforschen, ohne alle Details unserer Umgebung zu kennen. Und die mathematische Walz auf dem Fuhrwerk der internen Determiniertheit erweist sich als fruchtbar: Naheliegende Fragen können wir oft dann lösen, wenn wir über einen viel weiter entfernten Raum etwas in Erfahrung gebracht haben. Die Mathematik wird durch die geschickte iterierte Bildung von Objekten, die zunächst viele nur intern determinierte Eigenschaften haben, nicht blockiert oder gefährdet, sondern angetrieben und gefördert. Die Kenntnis einiger Eigenschaften naheliegender Objekte reicht aus, um einige Eigenschaften entfernterer Objekte extern bestimmen zu können, aus denen dann neue Erkenntnisse über nahe Objekte gewonnen werden können. Das Abschneiden dieser Schleife würde einen Ergebnismangel nach sich ziehen, der nicht zu verschmerzen wäre.
Damit sind wir bei einer Vorstellung angelangt, zu der die freie Mengenbildung und die Selbstbestimmtheit ihrer Produkte in natürlicher Weise führt: Die Mengenbildung ist eher eine Mengenbenennung. Es gibt eine mathematische Welt außerhalb von uns, die es zu erforschen gilt, ganz so, wie die Entdecker unbekannte Länder erforscht haben, wie die Astronomie uns heute das Weltall Stück für Stück näher bringt, oder wie ein Philologe eine vergessene alte Sprache entziffert. Es gibt Fragen über Fragen, und dann gibt es plötzlich Antworten, die frei von Willkür gegeben werden, und weltbildende Wirkung haben können, ohne dabei als absolute Wahrheiten auftreten zu müssen. Sie bleiben einfach Entdeckungen. Diese Vorstellung einer Mengenwelt außerhalb unserer selbst, so naiv sie sein mag, gehört zu den fruchtbarsten Konstrukten. Als idealistische menschliche Vorstellung bleibt sie stets außerhalb der Mathematik, aber dieses „außerhalb von etwas“ ist gerade das, was sie nährt. Ein kühles nächtliches Weltall und ein romantischer Betrachter passen gut zusammen.
Wir kommen gleich noch einmal auf diese Idee einer platonischen Mengenwelt zurück. Zunächst wenden wir uns dem Wort „Menge“ und der recht komplizierten Entstehung seiner Bedeutung selber zu.