Das Hilbertsche Hotel
Fast schon zur mathematischen Folklore geworden ist das Hilbertsche Hotel. Dieses Hotel hat für jede natürliche Zahl ein Zimmer:
Alle Zimmer sind belegt. Ein neuer Gast kann aber wie folgt untergebracht werden:
(i) | Jeder alte Gast zieht von Zimmer n nach Zimmer n + 1. |
(ii) | Der neue Gast wird in Zimmer 0 einquartiert. |
Derartige Möglichkeiten des Platzmachens durch Verschiebung sind gerade charakteristisch für unendliche Mengen. Es ist vielleicht ein Vergnügen für den Leser sich zu überlegen, wie er neue Gäste G0, G1, …, Gn, …, n ∈ ℕ, die alle gleichzeitig ankommen, in einem bereits ausgebuchten Hilbertschen Hotel unterbringen würde.